Phosphorus sorbing materials: sorption dynamics and physicochemical characteristics.

نویسندگان

  • J W Leader
  • E J Dunne
  • K R Reddy
چکیده

The effectiveness of various management practices to reduce phosphorus (P) loss from soil to water can potentially be improved by using by-product materials that have the capacity to sorb phosphorus. This study evaluated the P sorption and desorption potential, and the physicochemical characteristics of various phosphorus sorbing materials. Twelve materials were selected and P sorption potentials ranged between 66 and 990 mg kg(-1). Iron, and calcium drinking water treatment residuals (DWTRs), a magnesium fertilizer by-product, aluminum, and humate materials all removed substantial amounts of P from solution and desorbed little. Humate had the highest maximum P sorption capacity (S(max)). Materials which had a low equilibrium P concentration (EPC(0)) and a high S(max) included aluminum and humate by-products. In a kinetic study, the Fe-DWTR, Ca-DWTR, aluminum, and magnesium by-product materials all removed P (to relatively low levels) from solution within 4 h. Phosphorus fractionation suggests that most materials contained little or no P that was readily available to water. Sand materials contained the greatest P fraction associated with fulvic and humic acids. In general, materials (not Ca-DWTR) and magnesium by-product were composed of sand-sized particles. There were no relationships between particle size distributions and P sorption in materials other than sands. The Ca- and Fe-DWTR, and magnesium by-product also contained plant nutrients and thus, may be desirable as soil amendments after being used to sorb P. Further, using Ca-DWTRs and Fe-DWTRs as soil amendments may also increase soil cation exchange and water holding capacity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Phosphorus immobilization in micropores of drinking-water treatment residuals: implications for long-term stability.

Drinking-water treatment residuals (WTRs) can immobilize excess soil phosphorus (P), but little is known about the long-term P retention by WTRs. To evaluate the long-term P sorption characteristics of one Fe- and one Al-based WTR, physicochemical properties pertinent to time-dependency and hysteresis of P sorption were assessed. This study also investigated the P sorption mechanisms that could...

متن کامل

Intraparticle phosphorus diffusion in a drinking water treatment residual at room temperature.

Phosphorus (P) has been recognized as one of the major limiting nutrients that are responsible for eutrophication of surface waters, worldwide. Efforts have been concentrated on reducing P loads reaching water bodies, via surface runoff and/or leaching through a soil profile. Use of drinking water treatment residuals (WTRs) is an emerging cost-effective practice to reduce soluble P in poorly P-...

متن کامل

Modeling the eects of nonlinear equilibrium sorption on the transport of solute plumes in saturated heterogeneous porous media

Transport of sorbing solutes in 2D steady and heterogeneous ̄ow ®elds is modeled using a particle tracking random walk technique. The solute is injected as an instantaneous pulse over a ®nite area. Cases of linear and Freundlich sorption isotherms are considered. Local pore velocity and mechanical dispersion are used to describe the solute transport mechanisms at the local scale. This paper add...

متن کامل

Apatite as an interesting seed to remove phosphorus from wastewater in constructed wetlands.

Intensive use of phosphates has resulted in high P levels in surface waters and therefore eutrophication problems. Over the last decade many studies have revealed the advantage of using specific materials with efficient phosphorus retention capacities. Recent studies state that Ca materials are of particular interest for long-term retention of P, but can induce negative effects. To improve P re...

متن کامل

Phosphorus Sorption Capacity of Six Iowa Soils Before and After Five Years of Use as Vegetative Treatment Areas

Accumulation of phosphorus in soil is a major factor limiting the operational life of land application waste disposal systems. Moreover, for nutrient management purposes and evaluation of potential environmental problems it is necessary to understand the impact of manure application on soil phosphorus sorption characteristics. In this study laboratory experiments were conducted to investigate t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of environmental quality

دوره 37 1  شماره 

صفحات  -

تاریخ انتشار 2008